Abstract

Ammonium nitrate is an explosive agent that has a very low vapor pressure, which makes airborne detection very challenging. Detection of ammonium nitrate vapor has been achieved by using silica nanospring mats coated with a thin semiconducting layer of zinc oxide. The sensor was operated at room temperature and under ambient conditions in air. Lock-in amplification was employed to measure the change in electrical resistance of the sensor upon exposure to the said target gas analyte. The sensor showed fast detection, only taking ∼15 s to reach its peak response, and exhibited a moderate recovery time of approximately 0.5 min/20 ppm for <40 ppm exposures. A comparison between the ZnO coated nanospring sensor and ZnO thin film sensor demonstrated that the nanospring sensor has superior sensitivity and responsiveness over the thin film sensor. A percolation-based model is proposed to explain the greater sensitivity at low analyte concentrations of the ZnO-nanospring sensor, as compared to a ZnO thin film sensor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.