Abstract
Epitaxial thin-film heterostructures offer a versatile platform for realizing topological surface states (TSSs) that may be emergent and/or tunable by tailoring the atomic layering in the heterostructures. Here, as an experimental demonstration, Sb and Bi2Te3 thin films with closely matched in-plane lattice constants are chosen to form two complementary heterostructures: Sb overlayers on Bi2Te3 (Sb/Bi2Te3) and Bi2Te3 overlayers on Sb (Bi2Te3/Sb), with the overlayer thickness as a tuning parameter. In the bulk form, Sb (a semimetal) and Bi2Te3 (an insulator) both host TSSs with the same topological order but substantially different decay lengths and dispersions, whereas ultrathin Sb and Bi2Te3 films by themselves are fully gapped trivial insulators. Angle-resolved photoemission band mappings, aided by theoretical calculations, confirm the formation of emergent TSSs in both heterostructures. The energy position of the topological Dirac point varies as a function of overlayer thickness, but the variation is non-monotonic, indicating nontrivial effects in the formation of topological heterostructure systems. The results illustrate the rich physics of engineered composite topological systems that may be exploited for nanoscale spintronics applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.