Abstract

The timely repair of City Water Distribution System, a basic guarantee for the life of city residents, requires a reasonable supervision area partition of the City Water Distribution Network (CWDN). In this paper, a graph-theoretic and multi-objective approach for the partition of CWDN is presented. The proposed framework is mainly based on rescue distance and extreme workload of the same area. The rescue distance is expressed by effective distance, which is calculated by the adjustment of straight line distance and seeking smallest value. Extreme workload refers to the average importance of failure nodes belonging to a same crew and needing to be placed in balance. The node importance is coupled with node function importance and node structure importance, and they are calculated using knowledge of Graph Theory. This approach can finish the emergency repair scope partition quickly and easily since it does not rely on precise hydraulic simulation which requires complex calibration processes and computation, while remaining meaningful from a physical and topological point of view. The method is also applied to the analysis of a CWDN and successfully tested, with the result that there emerged a 7.83% decrease of the rescue distance. In addition, the balance of extreme workload was found to be three times higher than the previous.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.