Abstract

A recurrent neural network model with time delay is investigated by numerical methods. The model functions as both conventional associative memory and also enables us to embed a new kind of memory attractor that cannot be realized in models without time delay, for example chain-ring attractors. This is attributed to the fact that the time delay extends the available state space dimension. The difference between the basin structures of chain-ring attractors and of isolated cycle attractors is investigated with respect to the two attractor pattern sets, random memory patterns and designed memory patterns with intended structures. Compared to isolated attractors with random memory patterns, the basins of chain-ring attractors are reduced considerably. Computer experiments confirm that the basin volume of each embedded chain-ring attractor shrinks and the emergence of unstable itinerant orbits in the outer state space of the memory attractor basins is discovered. The instability of such itinerant orbits is investigated. Results show that a 1-bit difference in initial conditions does not exceed 10% of a total dimension within 100 updating steps.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.