Abstract

We characterize the time evolution of a d -dimensional probability distribution by the value of its final entropy. If it is near the maximally possible value we call the evolution mixing, if it is near zero we say it is purifying. The evolution is determined by the simplest nonlinear equation and contains a d x d matrix as input. Since we are not interested in a particular evolution but in the general features of evolutions of this type, we take the matrix elements as uniformly distributed random numbers between zero and some specified upper bound. Computer simulations show how the final entropies are distributed over this field of random numbers. The result is that the distribution crowds at the maximum entropy, if the upper bound is unity. If we restrict the dynamical matrices to certain regions in matrix space, to diagonal or triangular matrices, for instance, then the entropy distribution is maximal near zero, and the dynamics typically becomes purifying.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.