Abstract
The Proteus mirabilis PmirS clinical isolate, which was susceptible to imipenem (0.5 μg/mL) and amikacin (1 μg/mL), was recovered from a bronchial aspirate of a patient who recently underwent lung transplantation. The P. mirabilis PmirR clinical isolate, which exhibited resistance to imipenem (16 μg/mL) and amikacin (24 μg/mL), was isolated 3 weeks later from the same patient and the same specimen type. Using short-read sequencing technology, these isolates appeared to be genetically identical except the cpxA gene of the PmirR isolate that was mutated leading to the His-208-Pro substitution. The structural alteration was localized in the histidine kinase, adenylate cyclase, methyl accepting protein, phosphatase (HAMP) domain, which is involved in the signal transduction between the sensor kinase and the regulator response of the CpxA/CpxR two-component system (TCS). No significant defect in the growth rate was found between the PmirS and PmirR isolates. This study suggests that alteration in CpxA might confer imipenem and amikacin resistance in P. mirabilis. This study brings new evidence that the TCS alteration could provide an adaptive capacity in a clinical context by conferring antibiotic resistance without fitness cost.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.