Abstract

Motor variability (MV) is an essential feature of the sensory motor system, and it plays an important role in sensory-motor learning. MV facilitates motor adaptation during auditory-motor synchronization (AMS). In AMS, individuals receive a series of similar auditory stimuli that come in a periodic manner at a fixed interval called an inter-stimulus interval (ISI). Peri-second ISI (1 second range) and supra-second ISI (>1 second) are differently processed, since these intervals involve different amount of cognitive resources. Supra-second ISI involves more top-down attention as compared to peri-second ISI. In this study we examined the effect of tone frequency (perceptual property of auditory stimuli) on predictive tapping and MV under peri-second and supra-second ranges. We examined the effect of tone frequency (a perceptual property of auditory stimuli) on predictive tapping and motor variability (MV) under short (peri-second) and long (supra-second) inter-stimulus intervals. Among 30 healthy participants (aged 18-35 years, M = 24.6 years), we randomly assigned equal numbers of these two inter-stimulus conditions to isochronous sound sequences. In their attempt to synchronize their motor responses with the tone, participants reproduced the ISI in their inter-tap intervals (ITIs). We analyzed their predictive tapping in terms of negative asynchrony (in which the tap occurs before the tone) and small positive asynchrony (0-100 ms), whereas we analyzed MV using the coefficient of variation (CV) of the ITI. We found that participants showed predictive tapping under short ISI, irrespective of the tone frequency. Moreover, their MV was unaffected by tone frequency. These findings imply that participants expressed MV in a predictive rather than reactive manner under short, but not long, ISI. Under long ISI, tone frequency had a significant effect on MV such that there was higher MV with the low-frequency than with the high-frequency tone. Thus, low-frequency tones are most suitable for auditory-motor learning in the supra-second range.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call