Abstract
We report a determinant quantum Monte Carlo study of a two-band model, inspired by infinite-layer nickelates, focusing on the influence of interlayer hybridization between 3dx2−y2\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$3{d}_{{x}^{2}-{y}^{2}}$$\\end{document} orbitals derived from Ni (or Ni and O) in one layer and rare-earth (R) 5d orbitals in the other layer, hereafter the Ni and R layers, respectively. For a filling with one electron shared between the two layers on average, interlayer hybridization leads to “self-doped" holes in the Ni layer and the absence of antiferromagnetic ordering, but rather the appearance of spin-density and charge-density stripe-like states. As the interlayer hybridization increases, both the Ni and R layers develop antiferromagnetic correlations, even though either layer individually remains away from half-filling. For hybridization within an intermediate range, roughly comparable to the intralayer nearest-neighbor hopping tNi, the model develops signatures of Kondo-like physics.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have