Abstract
Does the primary visual cortex mediate consciousness for higher-level stages of information processing by providing an outlet for mental imagery? Evidence based on neural electrical activity is inconclusive as reflected in the “imagery debate” in cognitive science. Neural information and activity, however, also depend on regulated biophoton (optical) signaling. During encoding and retrieval of visual information, regulated electrical (redox) signals of neurons are converted into synchronized biophoton signals by bioluminescent radical processes. That is, visual information may be represented by regulated biophotons of mitochondrial networks in retinotopically organized cytochrome oxidase-rich neural networks within early visual areas. Therefore, we hypothesize that regulated biophotons can generate intrinsic optical representations in the primary visual cortex and then propagate variably degraded versions along cytochrome oxidase pathways during both perception and imagery. Testing this hypothesis requires to establish a methodology for measurement of in vivo and/or in vitro increases of biophoton emission in humans' brain during phosphene inductions by transcranial magnetic stimulation and to compare the decrease in phosphene thresholds during transcranial magnetic stimulation and imagery. Our hypothesis provides a molecular mechanism for the visual buffer and for imagery as the prevalent communication mode (through optical signaling) within the brain. If confirmed empirically, this hypothesis could resolve the imagery debate and the underlying issue of continuity between perception and abstract thought.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have