Abstract

In recent years, ostrich disease characterized by paralysis and diarrhea has been circulating in some regions of China, causing huge economic losses to the ostrich breeding industry. In our study, clinical samples from diseased ostriches were collected, and only parvovirus was detected. The virus distribution analysis by histopathology and quantitative real-time PCR assays indicated that the virus had a wide range of tissue tropisms. The full-length genome of the ostrich parvovirus (OsPV) was sequenced and comprehensively analyzed. Interestingly, the phylogenetic and alignment results indicated that the OsPV and the goose parvovirus (GPV) form a separate branch. In contrast to GPV strains, OsPV showed 2 new 14 nucleotide deletions in the inverted terminal repeat (ITR) region. Furthermore, recombination analysis indicated that OsPV was a recombination strain between the vaccine strain SYG61v and the virulent strain B strain, with the major parent of OsPV as the SYG61v strain and the minor parent as the B strain. The 14 nucleotide deletions in the ITR region as well as recombination may be some of the reasons for the cross-species transmission of parvovirus from goose to ostrich. The above data will contribute to a better understanding of the molecular biology of the novel OsPV and help to develop the vaccine candidate strain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.