Abstract

We investigate a multi-agent system with a behavior akin to the cluster formation in systems of coupled oscillators. The saturating attractive interactions between an infinite number of non-identical agents, characterized by a multimodal distribution of their natural velocities, lead to the emergence of clusters. We derive expressions that characterize the clusters, and calculate the asymptotic velocities of the agents and the critical value for the coupling strength under which no clustering can occur. The results are supported by mathematical analysis. For the particular case of a symmetric and unimodal distribution of the natural velocities, the relationship with the Kuramoto model of coupled oscillators is highlighted. While in the generic case the emergence of a cluster corresponds to a second-order phase transition, for a specific choice of the natural velocity distribution a first-order phase transition may occur, a phenomenon recently observed in the Kuramoto model. We also present an example for which the clustering behavior is quantitatively described in terms of the coupling strength. As an illustration of the potential of the model, we discuss how it applies to the dynamic process of opinion formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.