Abstract

Discovering important proteins in Protein–Protein Interaction (PPI) networks has attracted a lot of attention in recent years. Most of the previous work applies different network centrality measures such as Closeness, Betweenness, PageRank and many others to discover the most influential proteins in PPI networks. Although entropy is a well-known graph-based method in computer science, according to our knowledge, it is not used in the biology domain for this purpose. In this paper, first, we annotate the human PPI network with available annotation data. Second, we introduce a new concept called annotation-context that describes each protein according to annotation data of its neighbors. Third, we apply an entropy measure to discover proteins with varied annotation-context. Empirical results indicate that our proposed method succeeded in (1) differentiating essential and non-essential proteins in PPI networks with annotation data; (2) outperforming centrality measures in the task of discovering essential nodes; (3) predicting new annotated proteins based on existing annotation data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.