Abstract
The rise of deepfakes and AI-generated images has raised concerns regarding their potential misuse. However, this commentary highlights the valuable opportunities these technologies offer for neuroscience research. Deepfakes deliver accessible, realistic and customisable dynamic face stimuli, while generative adversarial networks (GANs) can generate and modify diverse and high-quality static content. These advancements can enhance the variability and ecological validity of research methods and enable the creation of previously unattainable stimuli. When AI-generated images are informed by brain responses, they provide unique insights into the structure and function of visual systems. The authors argue that experimental psychologists and cognitive neuroscientists stay informed about these emerging tools and embrace their potential to advance the field of visual neuroscience.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.