Abstract

Medulloblastoma (MB) is the most common pediatric intracranial tumor and leading cause of childhood related cancer deaths. Group 3 affiliation and genetic amplifications of the MYC oncogene are predictors of adverse outcome in MB, underscoring a dire need for novel and more effective therapeutic approaches. The let-7 family of small non-coding RNAs (miRNAs) is known to inhibit tumor progression and regulate metabolism by targeting and degrading several cellular mRNAs, including MYC. Indeed, let-7 miRNAs are frequently repressed in several cancer types, including in MYC-driven MB. We previously reported that the mRNA translation elongation regulator eukaryotic Elongation Factor-2 Kinase (eEF2K) is a pivotal mediator of cancer cell adaptation to nutrient deprivation. In the current work, we identified a potential binding site for let-7 miRNAs on the eEF2K 3’ untranslated region (UTR). In addition, eEF2K mRNA and let-7 miRNA expressions negatively correlate in MB, suggesting a potential regulation of the former by the latter. Let-7 miRNAs transfection decreases eEF2K mRNA and protein levels (by ~40–50%). Down-regulation of luciferase activity by let-7 miRNAs is impaired upon mutation of the let-7 binding site on the eEF2K 3’UTR. Inhibition of eEF2K significantly reduces survival of MYC-amplified MB cell lines under nutrient deprivation, altering their mRNA translation rates. Knockout of eEF2K increases survival of MYC-amplified MB xenografts when mice are kept under calorie restricted diets. We conclude that let-7 miRNAs degrade the eEF2K mRNA by binding to its 3’UTR, indicating that let-7 repression in MYC-driven MB is partially responsible for increased eEF2K levels. Moreover, the let-7-eEF2K axis constitutes a critical mechanism for MYC-driven MB adaptation to acute metabolic stress, representing a promising therapeutic target. Future therapeutic studies will aim to combine eEF2K inhibition with caloric restriction mimetic drugs, as eEF2K activity appears critical under metabolic stress conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.