Abstract

Recurrent neural networks have shown good abilities in learning the spatio-temporal dependencies of moving agents in crowded scenes. Recently, they have been adopted to predict the motion of pedestrians by learning the relative motion of each individual in the crowd with respect to its neighbors. Crowded scenes present a wide variety of situations, which do not depend solely on the agents’ positions, but also relate to the structure of the environment, the density of the crowd, and the social relationships between pedestrians. In this work we propose a framework to improve the state-of-the-art models of crowd motion prediction by enriching the learning model with the social relationships between pedestrians walking in the crowd, as well as the layout of the environment. We observe that socially-related people tend to exhibit coherent motion patterns. Exploiting the motion coherency, we are able to cluster trajectories with similar motion properties and improve the trajectory prediction, especially at the group level. Furthermore, we incorporate into the model also the layout of the environment, to guarantee a more realistic and reliable learning framework. We evaluate our approach on standard crowd benchmark datasets, demonstrating its efficacy and applicability, improving the accuracy in trajectory prediction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.