Abstract

Modern real-time streaming applications are increasingly implemented on multiprocessor systems-on-chip (MPSoC). The implementation, as well as the verification of real-time applications executing on MPSoCs, are difficult tasks, however. A major challenge is the performance analysis of MPSoCs, which is required for early design space exploration and final system verification. Simulation-based methods are not well-suited for this purpose, due to long runtimes and non-exhaustive corner-case coverage. To overcome these limitations, formal performance analysis methods that provide guarantees for meeting real-time constraints have been developed. Embedding formal performance analysis into the MPSoC design cycle requires the generation of a faithful analysis model and its calibration with the system-specific parameters. In this article, a design flow that automates these steps is presented. In particular, we integrate modular performance analysis (MPA) into the distributed operation layer (DOL) MPSoC programming environment. The result is an MPSoC software design flow that allows for automatically generating the system implementation, together with an analysis model for system verification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.