Abstract
HypothesisDeveloping separation membranes functionalized by polymer brushes with high separation efficiency and good cycling stability is of great importance for oil/water separation, yet is still challenged. ExperimentsIn this work, the covalently embedded polyzwitterionic brush-functionalized nanofibrous membrane was developed for efficient and durable oil/water separation. The nanofibrous membrane was prepared by the electrospinning method using initiator-embedded polyacrylonitrile (PAN) resin, followed by novel subsurface-initiated atom transfer radical polymerization (SSI-ATRP) to graft embedded poly(sulfobetaine methacrylate) brushes (PSBMA). The hydration ability, underwater oil adhesion, oil/water separation performance as well as self-cleaning properties of the as prepared membrane (PAN-sg-PSBMA) were systematically studied. FindingsThe PAN-sg-PSBMA membrane exhibited extraordinary hydration ability and underwater superoleophobicity with extremely low oil adhesion, which outperformed conventional polymer brush-modified membrane (PAN-g-PSBMA). The PAN-sg-PSBMA membrane was able to separate both oil/water mixture and surfactant-stabilized emulsions with ultrahigh permeation flux and separation efficiency. Moreover, compared with PAN-g-PSBMA, PAN-sg-PSBMA membrane exhibited unprecedented recycling stability in both permeation flux and separation efficiency, which is attributed to mechanical robustness of embedded polymer brushes and outstanding antifouling ability. The current findings revealed that embedded polymer brushes from SSI-ATRP could offer a promising design of functionalized nanofibrous membrane for highly efficient and durable oil/water separation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.