Abstract

This paper presents a quantitative comparison of state of the art model predictive direct switching control (MPDSC) methods for electrical drives. In MPDSC the switching states of the inverter are directly computed via model predictive control (MPC). This eliminates the need for modulators and presents an attractive alternative to classical field oriented control (FOC) approaches. Three classes of MPDSC methods are compared to field oriented model predictive control (FOMPC). The investigated MPDSC approaches are: hysteresis-based MPDSC, finite control set MPC (FCS-MPC) and model predictive pulse pattern control (MP3C). The comparison is based on transient and stationary simulations of a permanent magnet synchronous machine (PSM) driven by a voltage-fed two-level inverter, representative for high-performance automotive applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.