Abstract
We report the first demonstration of n-type III–V metal-semiconductor field-effect transistors (nMESFETs) with IV group material hetero-junction source and drain (S/D) technology. A selective epitaxial growth of germanium (Ge) in the recessed gallium arsenide (GaAs) S/D regions is successfully developed using ultra-high vacuum chemical vapor deposition (UHVCVD) system. The dual channel structure includes an additional 10-nm higher mobility n-In0.2Ga0.8As layer on n-GaAs channel and is introduced to further improve the device performance. The n-MESFET, combining embedded-Ge S/D with In0.2Ga0.8As/GaAs channel, exhibits good transfer properties with a drain current on/off ratio of approximately 103. Due to the small barrier height of Ti/In0.2Ga0.8As Schottky contact, a lattice-matched wide bandgap In0.49Ga0.51P dielectric layer is also integrated into the device architecture to build a higher electron Schottky barrier height (SBH) for gate leakage current reduction. The Ti/In0.49Ga0.51P/n-In0.2Ga0.8As Schottky diode shows a comparable leakage level to Ti/n-GaAs with 2 × 10−2 A/cm2 at a gate voltage of −2.0 V.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.