Abstract
This work presents a white-box modeling of the electromagnetic (EM) leakage from an integrated circuit (IC) to develop EM side-channel analysis (SCA)-aware design techniques. A new digital library cell layout design technique is proposed to minimize the EM leakage and is evaluated using a high-frequency structure simulator (HFSS)-based framework. Backed by our physics-based understanding of EM radiation, the proposed double-row power grid-based digital cell layout design shows <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$>5\times $ </tex-math></inline-formula> reduction in the EM SCA leakage compared to the traditional digital logic gate layout design. Furthermore, exploiting the magneto-quasistatic (MQS) regime of operation of the EM leakage from the CMOS circuits, the HFSS-based framework is utilized to develop a pre-silicon (Si) EM SCA evaluation technique to assess the vulnerability of cryptographic implementations against such attacks during the design phase itself.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.