Abstract

In this work, we demonstrate a novel unique design approach specifically targeting improved resilience against the fine-grained electromagnetic (EM) side-channel analysis (SCA) attacks. Fine-grained EM SCA captures high SNR EM signature with tiny probes (1mm diameter) compared to coarse-grained EM (∼10mm diameter), making it more potent and leading to a higher threat. The EM-SCA critical circuit blocks are voltage-stacked to share a current loop, and a push-pull voltage regulator (VR) balances the mismatch current between the two stacked blocks. Dataflow and current loops are spatially and temporally randomized to obscure the EM side-channel signatures. Measurement results from a 128-bit Parallel Advanced Encryption Standard (AES) core fabricated in 65nm CMOS shows MTD improvement of 1507X for fine-grained EM SCA. Coarse-grained EM and Power SCA MTDs also show an improvement of 122X and 657X respectively, which may be improved further by combining prior reported SCA resilient techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call