Abstract

The inductively coupled plasma mass spectrometry (ICPMS) has been attracting increasing attention for many applications as an element-selective chromatographic detector. A major and fundamental limitation in coupling ICPMS with liquid chromatography is the limited compatibility with organic solvents, which has so far been addressed via a tedious approach, collectively referred to as the “organic ICPMS mode”, that can decrease detection sensitivity by up to 100-fold. Herein, we report 1,2-hexanediol as a new eluent in high-performance liquid chromatography–ICPMS which enables avoiding the current limitations. Unlike commonly used eluents, 1,2-hexanediol was remarkably compatible with ICPMS detection at high flow rates of 1.5 mL min–1 and concentrations of at least 30% v/v, respectively, under the standard conditions and instrumental setup normally used with 100% aqueous media. Sensitivity for all tested elements (P, S, Cl, Br, Se, and As) was enhanced with 10% v/v 1,2-hexanediol relative to that of 100% aqueous media by 1.5–7-fold depending on the element. Concentrations of 1,2-hexanediol at ≤30% v/v were superior in elution strength to concentrations at >90% v/v of the common organic phases, which greatly decreases the amount of carbon required to elute highly hydrophobic compounds such as lipids and steroids, enabling detection at ultra-trace levels. The proposed approach was applied to detect arsenic-containing fatty acids in spiked human urine, and detection limits of <0.01 μg As L–1 were achieved, which is >100-fold lower than those previously reported using the organic ICPMS mode. Nontargeted speciation analysis in Allium sativum revealed the presence of a large number of hydrophobic sulfur-containing metabolomic features at trace levels.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.