Abstract

A fluorescent receptor, isocyanatopropyl trimethoxysilane grafted 9-amino acridine (AcI), was synthesized and characterized by elemental analysis, FTIR and NMR spectroscopy. Photophysical properties and pH-dependent fluorescence behavior of AcI were investigated and its complex stoichiometry with uranyl ion was elucidated. Change in fluorescence emission of AcI with pH of the solution was observed and pKa value was determined by using integrated emission intensity versus pH. It was found that AcI exhibited fluorescence enhancement, which can be attributed to an internal charge transfer (ICT) mechanism, upon titration with uranyl ions in mixture of ethanol-buffer solution while the fluorescence emission of AcI was not affected by addition of other divalent transition metal ions except mercury (II) ions. On the other hand, the both fluorescence and UV-vis titration measurements revealed unique selectivity for uranyl ions over the interfering mercury (II) ions. The spectrofluorometric titration clarified that uranyl interacted with AcI to form AcI 2(UO2(2 +))3 (2:3) complex structure with an apparent association constant of K = 7.41 × 10(6) M(-2/3). The interference effect of some cations on fluorescence enhancement exhibited by complex was also tested.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.