Abstract

The objective of this work was to relate macroscopically measurable on-line fermentation parameters such as dissolved oxygen, off-gas oxygen and carbon dioxide, and cell mass, to the controlled production of key intracellular enzymes under carbon limited conditions. Both batch and perturbed batch aerobic fermentations were performed using two different strains of Escherichia coli, with glucose and lactose as the sole carbon sources. The two strains differed from each other only in the lac operon region of their genome. The parent strain, E. coli 3000, was inducible for the enzyme beta-galactosidase. The other strain, E. coli 3300, was a constitutive mutant in the production of beta-galactosidase. In all experiments, off-line assays of sugars and beta-galactosidase activity were performed. It was observed that there is a clear relationship between the macroscopic on-line measurements, dissolved oxygen tension, carbon dioxide evolution rate and oxygen uptake rate, and the microscopic control phenomena of catabolite repression, catabolite inhibition, and inducer repression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.