Abstract

Similar to most Gram-negative bacteria, the outer leaflet of the outer membrane of Vibrio cholerae is comprised of lipopolysaccharide. Previous reports have proposed that V. cholerae serogroups O1 and O139 synthesize structurally different lipid A domains, which anchor lipopolysaccharide within the outer membrane. In the current study, intact lipid A species of V. cholerae O1 and O139 were analysed by mass spectrometry. We demonstrate that V. cholerae serogroups associated with human disease synthesize a similar asymmetrical hexa-acylated lipid A species, bearing a myristate (C14:0) and 3-hydroxylaurate (3-OH C12:0) at the 2′- and 3′-positions respectively. A previous report from our laboratory characterized the V. cholerae LpxL homologue Vc0213, which transfers a C14:0 to the 2′-position of the glucosamine disaccharide. Our current findings identify V. cholerae Vc0212 as a novel lipid A secondary hydroxy-acyltransferase, termed LpxN, responsible for transferring the 3-hydroxylaurate (3-OH C12:0) to the V. cholerae lipid A domain. Importantly, the presence of a 3-hydroxyl group on the 3′-linked secondary acyl chain was found to promote antimicrobial peptide resistance in V. cholerae; however, this functional group was not required for activation of the innate immune response.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.