Abstract
ABSTRACTGram-negative bacteria naturally produce outer membrane vesicles (OMVs) that arise through bulging and pinching off of the outer membrane. OMVs have several biological functions for bacteria, most notably as trafficking vehicles for toxins, antimicrobials, and signaling molecules. While their biological roles are now appreciated, the mechanism of OMV formation has not been fully elucidated. We recently demonstrated that the signaling molecule 2-heptyl-3-hydroxy-4-quinolone (PQS) is required for OMV biogenesis in P. aeruginosa. We hypothesized that PQS stimulates OMV formation through direct interaction with the outer leaflet of the outer membrane. To test this hypothesis, we employed a red blood cell (RBC) model that has been used extensively to study small-molecule–membrane interactions. Our results revealed that addition of PQS to RBCs induced membrane curvature, resulting in the formation of membrane spicules (spikes), consistent with small molecules that are inserted stably into the outer leaflet of the membrane. Radiotracer experiments demonstrated that sufficient PQS was inserted into the membrane to account for this curvature and that curvature induction was specific to PQS structure. These data suggest that a low rate of interleaflet flip-flop forces PQS to accumulate in and expand the outer leaflet relative to the inner leaflet, thus inducing membrane curvature. In support of PQS-mediated outer leaflet expansion, the PQS effect was antagonized by chlorpromazine, a molecule known to be preferentially inserted into the inner leaflet. Based on these data, we propose a bilayer-couple model to describe P. aeruginosa OMV biogenesis and suggest that this is a general mechanism for bacterial OMV formation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.