Abstract
The solution-phase structure and electronic relaxation dynamics of zinc bis-8-hydroxyquinoline [Zn(8HQ)2] in dimethyl sulfoxide (DMSO) were examined using a broad array of spectroscopic techniques, complimented by ab initio calculations of molecular structure. The ground-state structure was determined using extended X-ray absorption fine structure (EXAFS) data collected on the Zn K-edge and diffusion ordered spectroscopy (DOSY) NMR. The complex was found to be monomeric and octahedral, with two bidentate 8-hydroxyquinolate ligands and two DMSO molecules coordinated to the zinc through oxygen atoms. Electronic relaxation dynamics were examined with ultrafast transient absorption spectroscopy and complementary density functional calculations. Electronic relaxation was observed to proceed through both singlet and triplet pathways. This solution-phase data provides a deeper physical understanding of the behavior of this molecule, which has a variety of uses such as sensing, OLEDs, and biological applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.