Abstract

A number of solution-based procedures have been realized for the synthesis of lithium niobate (LiNbO3) nanoparticles (NPs). Relatively little is, however, known about the influences of the selection of lithium (Li) precursors on the resulting dimensions, shapes, crystallinity, and purity of the products. A comparative study is provided herein on the role of different Li precursors during the synthesis of LiNbO3 NPs. To the best of our knowledge, this study provides the first systematic comparison of the effects of various Li reagents on the preparation of LiNbO3 NPs through solvothermal processes. This solution-phase approach was tuned by the inclusion of Li precursors that either lacked carbon based anions (e.g., F-, Cl-, Br-, I-, OH-, NO3-, or SO42-) or contained carbon-based anions (e.g., C2H5O-, C2H3OO-, C5H7OO-, or CO32-). All other variables were held constant during the synthesis, such as reaction temperature, solvent, niobium precursor, and surfactants. The results of these studies suggest that the type of Li precursor selected plays an important role in nanoparticle formation, such as through controlling the uniformity, crystallinity, and aggregation of LiNbO3 NPs. The average diameter of the resulting NPs can also vary from ∼30 to ∼830 nm as a function of the Li reagent used in the synthesis. The selection of Li precursors also influences the phase purity of the products. This comparative study on the preparation of crystalline LiNbO3 NPs represents a critical step forward to understand the influences and roles of precursors in the design of synthetic processes for the preparation of a variety of alkali metal niobates (e.g., including NaNbO3 and KNbO3) and crystalline metal oxide-based NPs containing other transition metals (e.g., titanium, tantalum).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call