Abstract

Professionals and mountaineers often face the problem of reperfusion injury due to re-oxygenation, upon their return to sea-level after sojourn at high altitude. Small conductance calcium-activated potassium channels (SK channels) have a role in regulating hippocampal synaptic plasticity. However, the role of SK channels under hypoxia-reoxygenation (H/R) is unknown. The present study hypothesized that SK channels play a significant role in H/R induced cognitive dysfunction. Sprague-Dawley rats were exposed to simulated HH (25,000 ft) continuously for 7days followed by reoxygenation periods 3, 6, 24, 48, 72 and 120h. It was observed that H/R exposure caused impairment in spatial memory as indicated by increased latency (p < 0.001) and pathlength (p < 0.001). The SK1 channel expression increased upon HH exposure (102.89 ± 7.055), which abrogated upon reoxygenation. HH exposure results in an increase in SK2 (CA3, 297.67 ± 6.69) and SK3 (CA1, 246 ± 5.13) channels which continued to increase gradually upon reoxygenation. The number of pyknotic cells (24 ± 2.03) (p < 0.01) and the expression of caspase-3 increased with HH exposure, which continued in the reoxygenation group (177.795 ± 1.264). Similar pattern was observed in lipid peroxidation (p < 0.001), LDH activity (p < 0.001) and ROS production (p < 0.001). A positive correlation of memory, cell death and oxidative stress indicates that H/R exposure increases oxidative stress coupled with SK channel expression, which may play a role in H/R-induced cognitive decline and neurodegeneration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.