Abstract

Obesity usually induces overactive bladder (OAB) associated with detrusor overactivity, which is related to increased contractility of the detrusor smooth muscle (DSM). Small-conductance Ca2+-activated K+ (SK) channels play a constitutive role in the regulation of DSM contractility. However, the role of SK channels in the DSM changes in obesity-related OAB is still unknown. Here, we tested the hypothesis that obesity-related OAB is associated with reduced expression and activity of SK channels in DSM and that SK channels activation is a potential treatment for OAB. Female Sprague-Dawley rats were fed a normal diet (ND) or a high-fat diet (HFD) and weighed after 12 weeks. Urodynamic studies, quantitative reverse transcription-polymerase chain reaction (qRT-PCR), and isometric tension recording were performed. Increased average body weights and urodynamically demonstrated OAB were observed in HFD rats. qRT-PCR experiments revealed a decrease in the mRNA expression level of SK channel in DSM tissue of the HFD rats. Isometric tension recordings indicated an attenuated relaxation effect of NS309 on the spontaneous phasic and electrical field stimulation-induced contractions that occurred via SK channel activation in HFD DSM strips. Reduced expression and activity of SK channels in the DSM contribute to obesity-related OAB, indicating that SK channels are a potential therapeutic target for OAB.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call