Abstract

We report a series of studies aimed at shedding more light on the development mechanism of zirconium (Zr)-based extreme-UV hybrid photoresists. In earlier works, our group demonstrated that Zr-based hybrid resists are capable of resolving 30-nm half-pitch features with a very high sensitivity in the range of 1 to 20 mJ/cm2, which renders these materials potential candidates in the area of nonchemically amplified inorganic resists. While attractive because of its high sensitivity, Zr-methacrylic acid suffers from scumming problems. In an effort to better understand what controls sensitivity and scumming phenomena, we employed a combination of analytical techniques (electrospray ionization mass spectrometry, x-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy) to study the patterning mechanism in detail, to be able to optimize the development process and develop systems with optimal features.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call