Abstract

With the rise in global plastic production and agricultural demand, the released microplastics (MPs) have increasingly influenced the elemental cycles of soils, leading to notable effects on greenhouse gas emissions. Despite initial research, there remains a gap in establishing a detailed modeling approach that comprehensively explores the impacts of MPs on GHG emissions. Herein, we utilized literature mining to assemble a comprehensive dataset examining the interplays between MPs and emissions of CO2, CH4, and N2O. Five automated machine learning frameworks were employed for predictive modeling. The GAMA framework was particularly effective in predicting CO2 (Q2 = 0.946) and CH4 (Q2 = 0.991) emissions. The Autogluon framework provided the most accurate prediction for N2O emission, though it exhibited signs of overfitting. Interpretability analysis indicated that the type of MPs significantly influenced CO2 emission. Degradable MPs (i.e., polyamide) inherently led to elevated CO2 emission, and the environmental aging further exacerbated this effect. Although both linear and nonlinear correlations between MPs and CH₄ emission were not identified, the incorporation of specific MPs that elevate soil pH, augment soil water retention, and cultivate anaerobic conditions may potentially elevate soil CH₄ emission. This research underscores the profound influence of MPs on soil GHG emissions, providing vital insights for shaping agricultural policies and soil management practices in the context of escalating plastic use.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call