Abstract

Nanoscale infrared (IR) spectroscopy and microscopy, enabling the acquisition of IR spectra and images with a lateral resolution of 20 nm, is employed to chemically characterize individual cellulose nanocrystals (CNCs) and cellulose nanofibrils (CNFs) to elucidate if the CNCs and CNFs consist of alternating crystalline and amorphous domains along the CNF/CNC. The high lateral resolution enables studies of the nanoscale morphology at different domains of the CNFs/CNCs: flat segments, kinks, twisted areas, and end points. The types of nanocellulose investigated are CNFs from tunicate, CNCs from cotton, and anionic and cationic wood-derived CNFs. All nano-FTIR spectra acquired from the different samples and different domains of the individual nanocellulose particles resemble a spectrum of crystalline cellulose, suggesting that the non-crystalline cellulose signal observed in macroscopic measurements of nanocellulose most likely originate from cellulose chains present at the surface of the nanocellulose particles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call