Abstract

Ion activation methods carried out at gas pressures compatible with ion mobility separations are not yet widely established. This limits the analytical utility of emerging tandem-ion mobility spectrometers that conduct multiple ion mobility separations in series. The present work investigates the applicability of collision-induced dissociation (CID) at 1 to 3 mbar in a tandem-trapped ion mobility spectrometer (tandem-TIMS) to study the architecture of protein complexes. We show that CID of the homotetrameric protein complexes streptavidin (53 kDa), neutravidin (60 kDa), and concanavalin A (110 kDa) provides access to all subunits of the investigated protein complexes, including structurally informative dimers. We report on an "atypical" dissociation pathway, which for concanavalin A proceeds via symmetric partitioning of the precursor charges and produces dimers with the same charge states that were previously reported from surface induced dissociation. Our data suggest a correlation between the formation of subunits by CID in tandem-TIMS/MS, their binding strengths in the native tetramer structures, and the applied activation voltage. Ion mobility spectra of in situ-generated subunits reveal a marked structural heterogeneity inconsistent with annealing into their most stable gas phase structures. Structural transitions are observed for in situ-generated subunits that resemble the transitions reported from collision-induced unfolding of natively folded proteins. These observations indicate that some aspects of the native precursor structure is preserved in the subunits generated from disassembly of the precursor complex. We rationalize our observations by an approximately 100-fold shorter activation time scale in comparison to traditional CID in a collision cell. Finally, the approach discussed here to conduct CID at elevated pressures appears generally applicable also for other types of tandem-ion mobility spectrometers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.