Abstract

Previous investigations on the stress response patterns of earthworms (Eisenia fetida) in practical petroleum hydrocarbon (PH) contamination systems were less focused. Therefore, this study investigated the ecotoxicological effect of PH contamination on earthworms based on metabonomics and histological observation, followed by correlation analysis between the earthworm metabolism, PH types and concentrations, soil physicochemical characteristics, and the microbial community structures (i.e., diversity and abundance) and functions. The results showed that due to the abundant PH organics, the cell metabolism of earthworms shifts under PH contamination conditions, leading them to use organic acids as alternative energy sources (i.e., gluconeogenesis pathway). Simultaneously, biomarker metabolites related to cellular uptake, stress response, and membrane disturbance were identified. In addition, when compared to the controls, considerable epicuticle and cuticle layer disruption was observed, along with PH internalization. It was demonstrated that PH pollution preferentially influences the physiological homeostasis of earthworms through indirect (i.e., microbial metabolism regulation) than direct (i.e., direct interaction with earthworms) mechanisms. Moreover, the varied CO2 releasement was verified, which highlights the potential role of earthworms in influencing carbon transformation and corresponds with the considerably enriched energy metabolism-related pathway. This study indicated that PH contamination can induce a strong stress response in earthworms through both direct and indirect mechanisms, which in turn, substantially influences carbon transformation in PH contamination sites.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.