Abstract

In order to compare the impacts of the choice of land surface model (LSM) parameterization schemes, meteorological forcing, and land surface parameters on land surface hydrological simulations, and explore to what extent the quality can be improved, a series of experiments with different LSMs, forcing datasets, and parameter datasets concerning soil texture and land cover were conducted. Six simulations are run for mainland China on 0.1o×0.1o grids from 1979 to 2008, and the simulated monthly soil moisture (SM), evapotranspiration (ET), and snow depth (SD) are then compared and assessed against observations. The results show that the meteorological forcing is the most important factor governing output. Beyond that, SM seems to be also very sensitive to soil texture information; SD is also very sensitive to snow parameterization scheme in the LSM. The Community Land Model version 4.5 (CLM4.5), driven by newly developed observation-based regional meteorological forcing and land surface parameters (referred to as CMFD_CLM4.5_NEW), significantly improved the simulations in most cases over mainland China and its eight basins. It increased the correlation coefficient values from 0.46 to 0.54 for the SM modeling and from 0.54 to 0.67 for the SD simulations, and it decreased the root-mean-square error (RMSE) from 0.093 to 0.085 for the SM simulation and reduced the normalized RMSE from 1.277 to 0.201 for the SD simulations. This study indicates that the offline LSM simulation using a refined LSM driven by newly developed observation-based regional meteorological forcing and land surface parameters can better model reginal land surface hydrological processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.