Abstract

Flavonoids are polyphenolic compounds produced by plants as secondary metabolites that are known to exhibit wide range of pharmaceutical properties. Flavonoids from different medicinal plants have been used in traditional medicine to treat several musculoskeletal disorders for centuries. Of the numerous flavonoids, baicalein from Oroxylum indicum has a well-documented protective effect in skeletal health. However, studies into its influence on the canonical Wnt/β-catenin signaling pathway for musculoskeletal disorders remain limited. With the results of our previous study, the current research investigated the molecular mechanism of baicalein to inhibit the interaction between LRP6 and sclerostin to activate the canonical Wnt/β-catenin signaling pathway. Molecular docking revealed that baicalein docks between LRP6 and sclerostin with a binding energy of −8.4 kcal/mol and interacts with key binding residues of both the proteins. The molecular dynamics simulations predicted the stability of baicalein through 100 ns with more conformational changes observed in sclerostin than LRP6 especially in and around the PNAIG motif of loop-2 region, hinting at a possible inhibitory effect of baicalein over sclerostin. The findings of this research could pave the way for novel drug design approaches while promoting the use of natural flavonoids as potential therapeutics for musculoskeletal disorders. Communicated by Ramaswamy H. Sarma

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call