Abstract

Atoms in intense, high-frequency laser fields exhibit the remarkable property that they can be stable against ionization. We investigate the structure of stabilized wavepackets for a two-dimensional model hydrogen atom interacting with an intense, high frequency laser pulse as a function of the laser pulse ellipticity and laser pulse rise-time. The computed wavepackets are compared with the corresponding Kramers-Henneberger (K-H) ground states. Laser pulse turn-on effects are studied by contrasting the structure of the localized part of the wavepackets and the ionizing part of the wavepackets for three different ellipticities and for various pulse turn-on times.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call