Abstract
We construct new elliptic solutions of the restricted Toda chain. These solutions give rise to a new explicit class of orthogonal polynomials, which can be considered as a generalization of the Stieltjes–Carlitz elliptic polynomials. Relations between characteristic (i.e., positive definite) functions, Toda chain, and orthogonal polynomials are developed in order to derive the main properties of these polynomials. Explicit expressions are found for the recurrence coefficients and the weight function for these polynomials. In the degenerate cases of the elliptic functions, the modified Meixner polynomials and the Krall–Laguerre polynomials appear.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have