Abstract
In today's technology, a sheer number of Internet of Things applications use hardware security modules for secure communications. The widely used algorithms in security modules, for example, digital signatures and key agreement, are based upon elliptic curve cryptography (ECC). A core operation used in ECC is the point multiplication, which is computationally expensive for many Internet of things applications. In many IoT applications, such as intelligent transportation systems and distributed control systems, thousands of safety messages need to be signed and verified within a very short time-frame. Considerable research has been conducted in the design of a fast elliptic curve arithmetic on finite fields using residue number systems (RNS). In this article, we propose an RNS-based ECC core hardware for the two families of elliptic curves that are short Weierstras and twisted Edwards curves. Specifically, we present RNS implementations for SECP256K1 and ED25519 standard curves. We propose an RNS hardware architecture supporting fast elliptic curve point-addition (ECPA), point-doubling (ECPD), and point-tripling (ECPT). We implemented different ECC point multiplication algorithms on the Xilinx FPGA platform. The test results confirm that the performance of our fully RNS ECC point multiplication is better than the fastest ECC point multiplication cores in the literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.