Abstract

Ellerman bombs and Type II white-light flares share many common features despite the large energy gap between them. Both are considered to result from local heating in the solar lower atmosphere. This paper presents numerical simulations of magnetic reconnection occurring in such a deep atmosphere, with the aim to account for the common features of the two phenomena. Our numerical results manifest the following two typical characteristics of the assumed reconnection process: (1) magnetic reconnection saturates in ~ 600--900 s, which is just the lifetime of the two phenomena; (2) ionization in the upper chromosphere consumes quite a large part of the energy released through reconnection, making the heating effect most significant in the lower chromosphere. The application of the reconnection model to the two phenomena is discussed in detail.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call