Abstract

Background/AimsThe role of Elk-3 in the epithelial-mesenchymal transition (EMT) during liver fibrogenesis remains unclear. Here, we determined the expression of Elk-3 in in vitro and in vivo models and in human liver fibrotic tissues. We also investigated the molecular relationships among Elk-3, early growth response-1 (Egr-1), and the mitogen activated protein kinases (MAPK) pathway during EMT in hepatocytes.MethodsWe established anin vitro EMT model in which normal mouse hepatocyte cell lines were treated with transforming growth factor (TGF)-β1 and a CCl4-induced liver fibrosis model. Characteristics of EMT were determined by evaluating the expression levels of related markers. The expression of Elk-3 and its target Egr-1 were analyzed using Western blotting. Gene silencing of Elk-3 was performed using an siRNA knockdown system.ResultsThe expression levels of mesenchymal markers were increased during TGF-β1-induced EMT of hepatocytes. The expression levels of Elk-3 and Egr-1 were significantly (p<0.05) increased during the EMT of hepatocytes, in CCl4-induced mouse liver fibrotic tissues, and in human liver cirrhotic tissues. Silencing of Elk-3 and inhibition of the Ras-Elk-3 pathway with an inhibitor suppressed the expression of EMT-related markers. Moreover, Elk-3 expression was regulated by p38 MAPK phosphorylation during EMT.ConclusionsElk-3 contributes to the progression of liver fibrosis by modulating the EMT via the regulation of Egr-1 under MAPK signaling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.