Abstract

In application of the Reduction Theorem to the general problem ofn (>-3) bodies, a Mathieu canonical transformation is proposed whereby the new variables separate naturally into (i) a coordinate system on any reduced manifold of constant angular momentum, and (ii) a quadruple made of a pair of ignorable longitudes together with their conjugate momenta. The reduction is built from a binary tree of kinetic frames Explicit transformation formulas are obtained by induction from the top of the tree down to its root at the invariable frame; they are based on the unit quaternions which represent the finite rotations mapping one vector base onto another in the chain of kinetic frames. The development scheme lends itself to automatic processing by computer in a functional language.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.