Abstract

A major concern in the clinical application of induced pluripotent stem cells (iPSCs) is the prevention of tumorigenesis after implantation. Stem cells with high proliferative and differentiation potential are sensitive to radiation. Therefore, we hypothesized that irradiation may selectively eliminate residual undifferentiated human iPSCs (hiPSCs) in a cell population containing differentiated cardiomyocytes derived from hiPSCs (hiPSCs-CMs) and thus reduce tumorigenicity in vivo. hiPSC-CMs were irradiated with X-rays, after which the cell proliferation, apoptosis, morphology, and gene expression were analyzed. The gene expression of Lin28A, Nanog, Oct3/4, and SRY-box 2 was significantly lower in the irradiation group than in the control group. Irradiated hiPSC-CMs showed no change in proliferation potency and morphology compared to untreated hiPSC-CMs. Furthermore, irradiation did not induce apoptosis of differentiated cardiomyocytes. No significant difference in the gene expression of cardiac-specific markers, including α-myosin heavy chain, cardiac troponin T, and NK2 Homeobox 5, was observed between the groups. Tumorigenicity tests using NOG mice showed less frequent tumor formation in the irradiation group than in the control group. Irradiation of hiPSC-CMs significantly reduced the number of undifferentiated hiPSC and the tumor formation, while minimizing any adverse effects on hiPSC-CMs, thereby enabling safe hiPSC-based treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.