Abstract

The accuracy and clogging of microchannels are important for assessing the quality of lab on chip (L-O-C) devices. The clogging affects the fluid mixing efficiency and influences the bonding of substrate. In this paper, inexpensive and quick method for microchannel fabrication in polymethyl methacrylate (PMMA) while reducing the thermal damage is introduced. Accordingly, the substrate was covered with a thin layer of water during CO2 laser ablation. The effect of water cooling on the clogging formation, heat affected zone and the microchannel geometry in terms of depth and width is investigated. Clogging formation mechanism in the intersection of Y-channel is studied to improve its quality for microfluidics applications. During the experimental work, the CO2 laser power was varied from 2.4 to 6 W at scanning speed from 5 to 12.5 mm/s. The results showed that covering the PMMA substrate with a thin layer of water prevented clogging formation and reduced the heat affected zone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.