Abstract

We propose an optical design process that significantly reduces the time and costs in direct backlight unit (BLU) development. In it, the basic system specifications are derived from the optical characteristics of RGB light-emitting diodes (LEDs) comprising the BLU. The driving currents are estimated to determine the theoretical RGB flux ratio for a desired white point. The number of LEDs needed to produce the target luminance is then calculated from the combined optical efficiencies of the components. Last, an appropriate array configuration is sought based on the illuminance distribution function for meeting the target uniformity. To showcase the design process we built two 42-inch triangular cluster arrays of 40 x 16 LED elements. When a flat reflective sheet was used, the minimum thickness required of the system to satisfy the target uniformity was 30 mm. Introducing a patterned reflective sheet removed hotspots that resulted from reducing the system thickness without the aid of additional optical components. Using an optimized patterned reflective sheet, reduction in system thickness as much as 5 mm was possible.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.