Abstract

This work presents a detailed study about the heat dissipation performance of direct illumination high-power light emitting diode (LED) backlight units with two different assembling structures, one of which is traditional and the other is new. The traditional structure, referred to by structure-1, consists of multiple LEDs being directly welded to the printed circuit board (PCB), where the PCB is used as a physical support, an electrical connector and also as a heat dissipation medium. The new structure, referred to by structure-2, places the LEDs directly on the cooling boss; in this case the PCB plays mainly the role of an electrical connector. Thermal characteristics related to the two backlight units are analyzed in terms of thermal resistance network, numerically simulated and experimentally tested. The obtained results by different methods accord with each other reasonably well and all indicate that both structures can meet the requirements of heat dissipation for backlight units at an ambient temperature of 30 °C. Among the two structures, the LED junction temperature of structure-1 backlight unit is 7–8 °C higher and the temperature distribution in the back plane of the backlight unit is also more uniform.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.