Abstract

The transient receptor potential vanilloid 1 (TRPV1) channel is a thermo-sensitive, polymodal cation channel. An increase in intracellular calcium (Ca2+) is essential for T-cell responses. Similarly, various immunosuppressive agents are also reported to induce Ca2+ influx. However, the possible involvement of TRPV1 during immunosuppression has not been studied yet. Here, we investigated the possible functional role of TRPV1 in FK506 or B16F10-culture supernatant (B16F10-CS)-driven experimental immunosuppression in T-cells. Intriguingly, it was found that TRPV1 surface expression was further significantly elevated during immunosuppression compared with concanavalin A (ConA) or TCR-activated T-cells. Moreover, in B16F10 tumor-bearing mice, TRPV1 expression was upregulated on splenic T-cells as compared with T-cells derived from control mice. We also observed an immediate increase in intracellular Ca2+ levels in FK506 (marked increase) and B16F10-CS treatment (modest increase) or in combination with T-cell activation as compared with resting and activated T-cells. Likewise, in B16F10 tumor-bearing mice, the basal intracellular calcium level was upregulated in T-cells as compared with controls. The elevated Ca2+ level(s) were found to be significantly downregulated by 5'-iodoresiniferatoxin (50-IRTX) (a TRPV1-specific inhibitor), suggesting an important role of TRPV1 during immune activation and immunosuppression. The current study may have implications for immunosuppressive diseases along with inflammatory disorders associated with the coordinating role of TRPV1 and Ca2+ influx.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.