Abstract
The top of the olivine-spinel phase change in subducted oceanic lithosphere can be located by the travel times of seismic waves which have propagated through the slab. P-wave travel-time residuals from deep earthquakes in the Tonga island are observed at Australian seismic stations are grouped according to the depth of the earthquake. The change in mean residual with a change in earthquake depth is related to the velocity contrast between slab and normal mantle at that depth. The curve mean residual versus earthquake depth displays a region of markedly increased slope between earthquake depths of about 250 and 350 km. The most probable explanation of this observation is an elevation by 100 km of the olivine-spinel phase change within the relatively cooler slab. No evidence was found for vertical displacements within the slab of any deeper phase changes. A temperature contrast between slab and normal mantle of about 1,000°C at 250 km depth is implied. This finding confirms current thermal models for subducted lithosphere but is inconsistent with the global intraplate stress field unless only a few percent of the negative buoyancy force at subduction zones is transmitted to the surface plates.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have