Abstract

One of the major impacts of climate change has been the marked rise in global temperature. Recently, we demonstrated that high temperatures (1-week exposure) disrupt prooxidant-antioxidant homeostasis and promote cellular apoptosis in the American oyster. In this study, we evaluated the effects of seasonal sea surface temperature (SST) on tissue morphology, extrapallial fluid (EPF) conditions, heat shock protein-70 (HSP70), dinitrophenyl protein (DNP, an indicator of reactive oxygen species, ROS), 3-nitrotyrosine protein (NTP, an indicator of RNS), catalase (CAT), superoxide dismutase (SOD) protein expressions, and cellular apoptosis in gills and digestive glands of oysters collected on the southern Texas coast during the winter (15°C), spring (24°C), summer (30°C), and fall (27°C). Histological observations of both tissues showed a notable increase in mucus production and an enlargement of the digestive gland lumen with seasonal temperature rise, whereas biochemical analyses exhibited a significant decrease in EPF pH and protein concentration. Immunohistochemical analyses showed higher expression of HSP70 along with the expression of DNP and NTP in oyster tissues during summer. Intriguingly, CAT and SOD protein expressions exhibited significant upregulation with rising seasonal temperatures (15 to 27°C), which decreased significantly in summer (30°C), leaving oysters vulnerable to oxidative and nitrative damage. qRT-PCR analysis revealed a significant increase in HSP70 mRNA levels in oyster tissues during the warmer seasons. In situ TUNNEL assay showed a significant increase in apoptotic cells in seasons with high temperature. These results suggest that elevated SST induces oxidative/nitrative stress through the overproduction of ROS/RNS and disrupts the antioxidant system which promotes cellular apoptosis in oysters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.